首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15430篇
  免费   1009篇
  国内免费   1312篇
  2023年   267篇
  2022年   245篇
  2021年   498篇
  2020年   435篇
  2019年   524篇
  2018年   403篇
  2017年   436篇
  2016年   519篇
  2015年   569篇
  2014年   737篇
  2013年   905篇
  2012年   546篇
  2011年   644篇
  2010年   560篇
  2009年   700篇
  2008年   753篇
  2007年   846篇
  2006年   715篇
  2005年   676篇
  2004年   652篇
  2003年   571篇
  2002年   508篇
  2001年   421篇
  2000年   422篇
  1999年   371篇
  1998年   410篇
  1997年   319篇
  1996年   271篇
  1995年   300篇
  1994年   247篇
  1993年   225篇
  1992年   243篇
  1991年   219篇
  1990年   176篇
  1989年   173篇
  1988年   142篇
  1987年   119篇
  1986年   107篇
  1985年   146篇
  1984年   113篇
  1983年   74篇
  1982年   107篇
  1981年   93篇
  1980年   66篇
  1979年   72篇
  1978年   55篇
  1977年   41篇
  1976年   26篇
  1975年   16篇
  1973年   22篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
971.
Lysosomal cathepsins in embryonic programmed cell death   总被引:1,自引:0,他引:1  
During limb development, expression of cathepsin D and B genes prefigure the pattern of interdigital apoptosis including the differences between the chick and the webbed digits of the duck. Expression of cathepsin L is associated with advanced stages of degeneration. Analysis of Gremlin-/- and Dkk-/- mouse mutants and local treatments with BMP proteins reveal that the expression of cathepsin B and D genes is regulated by BMP signaling, a pathway responsible for triggering cell death. Further cathepsin D protein is upregulated in the preapoptotic mesenchyme before being released into the cytosol, and overexpression of cathepsin D induces cell death in embryonic tissues by a mechanism including mitochondrial permeabilization and nuclear translocation of AIF. Combined inhibition of cathepsin and caspases suggests a redundancy in the apoptotic molecular machinery, providing evidence for compensatory activation mechanisms in the cathepsin pathway when caspases are blocked. It is concluded that lysosomal enzymes are functionally implicated in embryonic programmed cell death.  相似文献   
972.
973.
Passport data for Mexico’s Guanajuato State were used to locate the sites where maize was collected in the 1940s and 1950s in an effort to document and conserve diversity. A map presenting survey points illustrates that collections have occurred repeatedly in the same locations. Observations of these locations reveal that urbanization and industrialization, not high yielding varieties, are displacing traditional varieties. Non-linear principal components analysis was used to assess associations between variables in areas where maize persists. Landraces appear to be associated with mountains and mesas, mixed cropping, little or no access to irrigation and areas classified as having low agricultural capacity; conversely, landraces have more commonly been replaced in areas of high agricultural capacity. The areas of high agriculture capacity, located in the riparian areas and plains, also have been the easiest to develop for urban and industrial use. Increasingly high rates of urbanization and development in areas of high agriculture capacity will impede the conservation of crop diversity in these areas.  相似文献   
974.
Tbx1 is required for ear development in humans and mice. Gene manipulation in the mouse has discovered multiple consequences of loss of function on early development of the inner ear, some of which are attributable to a cell autonomous role in maintaining cell proliferation of epithelial progenitors of the cochlear and vestibular apparata. However, ablation of the mesodermal domain of the gene also results in severe but more restricted abnormalities. Here we show that Tbx1 has a dynamic expression during late development of the ear, in particular, is expressed in the sensory epithelium of the vestibular organs but not of the cochlea. Vice versa, it is expressed in the condensed mesenchyme that surrounds the cochlea but not in the one that surrounds the vestibule. Loss of Tbx1 in the mesoderm disrupts this peri-cochlear capsule by strongly reducing the proliferation of mesenchymal cells. The organogenesis of the cochlea, which normally occurs inside the capsule, was dramatically affected in terms of growth of the organ, as well as proliferation, differentiation and survival of its epithelial cells. This model provides a striking demonstration of the essential role played by the periotic mesenchyme in the organogenesis of the cochlea.  相似文献   
975.
While recent work has implicated Tbx20 in myocardial maturation and proliferation, the role of Tbx20 in heart valve development remains relatively unknown. Tbx20 expression was manipulated in primary avian endocardial cells in order to elucidate its function in developing endocardial cushions. Tbx20 gain of function was achieved with a Tbx20-adenovirus, and endogenous Tbx20 expression was inhibited with Tbx20-specific siRNA in cultured endocardial cushion cells. With Tbx20 gain of function, the expression of chondroitin sulfate proteoglycans (CSPG), including aggrecan and versican, was decreased, while the expression of the matrix metalloproteinases (MMP) mmp9 and mmp13 was increased. Consistent results were observed with Tbx20 loss of function, where the expression of CSPG genes increased and MMP genes decreased. In addition, cushion mesenchyme proliferation increased with infection of a Tbx20-adenovirus and decreased with transfection of Tbx20-specfic siRNA. Furthermore, BMP2 treatment resulted in increased Tbx20 expression in endocardial cushion cells, and loss of Tbx20 led to increased Tbx2 and decreased N-myc gene expression. Taken together, these data support a role for Tbx20 in repressing extracellular matrix remodeling and promoting cell proliferation in mesenchymal valve precursor populations in endocardial cushions during embryonic development.  相似文献   
976.
The cell adhesion molecule neurofascin (NF) has a major neuronal isoform (NF186) containing a mucin-like domain followed by a fifth fibronectin type III repeat while these domains are absent from glial NF155. Neuronal NF isoforms lacking one or both of these domains are expressed transiently in embryonic dorsal root ganglia (DRG). These two domains are co-expressed in mature NF186, which peaks in expression prior to birth and then persists almost exclusively at nodes of Ranvier on myelinated axons. In contrast, glial NF155 is only detected postnatally with the onset of myelination. All these forms of NF bound homophilically and to Schwann cells but only the mature NF186 isoform inhibits cell adhesion, and this activity may be important in formation of the node of Ranvier. Schwann cells deficient in NF155 myelinated DRG axons in a delayed manner and they showed significantly decreased clustering of both NF and Caspr in regions where paranodes normally form. The combined results suggest that NF186 is expressed prenatally on DRG neurons and it may modulate their adhesive interactions with Schwann cells, which express NF155 postnatally and require it for development of axon-glial paranodal junctions.  相似文献   
977.
978.
979.
During craniofacial development, Meckel's cartilage and the mandible bone derive from the first branchial arch, and their development depends upon the contribution of cranial neural crest (CNC) cells. We previously demonstrated that conditional inactivation of Tgfbr2 in the neural crest of mice (Tgfbr2fl/fl;Wnt1-Cre) results in severe defects in mandibular development, although the specific cellular and molecular mechanisms by which TGF-β signaling regulates the fate of CNC cells during mandibular development remain unknown. We show here that loss of Tgfbr2 does not affect the migration of CNC cells during mandibular development. TGF-β signaling is specifically required for cell proliferation in Meckel's cartilage and the mandibular anlagen and for the formation of the coronoid, condyle and angular processes. TGF-β-mediated connective tissue growth factor (CTGF) signaling is critical for CNC cell proliferation. Exogenous CTGF rescues the cell proliferation defect in Meckel's cartilage of Tgfbr2fl/fl;Wnt1-Cre mutants, demonstrating the biological significance of this signaling cascade in chondrogenesis during mandibular development. Furthermore, TGF-β signaling controls Msx1 expression to regulate mandibular osteogenesis as Msx1 expression is significantly reduced in Tgfbr2fl/fl;Wnt1-Cre mutants. Collectively, our data suggest that there are differential signal cascades in response to TGF-β to control chondrogenesis and osteogenesis during mandibular development.  相似文献   
980.
Gain-of-function mutations in fibroblast growth factor (FGF) receptors result in chondrodysplasia and craniosynostosis syndromes, highlighting the critical role for FGF signaling in skeletal development. Although the FGFRs involved in skeletal development have been well characterized, only a single FGF ligand, FGF18, has been identified that regulates skeletal development during embryogenesis. Here we identify Fgf9 as a second FGF ligand that is critical for skeletal development. We show that Fgf9 is expressed in the proximity of developing skeletal elements and that Fgf9-deficient mice exhibit rhizomelia (a disproportionate shortening of proximal skeletal elements), which is a prominent feature of patients with FGFR3-induced chondrodysplasia syndromes. Although Fgf9 is expressed in the apical ectodermal ridge in the limb bud, we demonstrate that the Fgf9-/- limb phenotype results from loss of FGF9 functions after formation of the mesenchymal condensation. In developing stylopod elements, FGF9 promotes chondrocyte hypertrophy at early stages and regulates vascularization of the growth plate and osteogenesis at later stages of skeletal development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号